LIST OF SYMBOLS

Typical units given in square brackets. If no units are given, variable is dimensionless.

A_e	Exit area $[m^2]$		
A_i	Intake area [m ²]		
A_{f}	Frontal area [m ²]		
A_{plan}	Planview or planform area [m ²]		
A_{ref}	Reference area [m ²]		
A_{wet}	Wetted area [m ²]		
AR	Aspect ratio		
α	Angle-of-attack (pronounced <i>alpha</i>) [degrees]		
α	Shear angle (or a fluid element)		
	[degrees, radians]		
b	width of a wing (i.e. span).		
-	or the vehicle body [m]		
C	Chord [m]		
C.	Drag coefficient		
C_d	Drag coefficient based on frontal area		
$C_{d,fr}$	Induced drag coefficient		
$C_{d,i}$	Drag coefficient based on planuiou area		
C _{d,plan}	Drag coefficient based on planview area		
$C_{d,wet}$	Drag coefficient based on wetted area		
C_f	Skin-friction coefficient based on wetted area		
$C_{f,flat}$	Skin-friction coefficient of a flat plate		
~	based on wetted area		
$C_{f,lam}$	Laminar skin-friction coefficient		
-	based on wetted area		
C _{f,turb}	Turbulent skin-friction coefficient		
	based on wetted area		
C_L	Lift coefficient		
$C_{L,f}$	Lift coefficient at front axle		
$C_{L,r}$	Lift coefficient at rear axle		
C_{rr}	Rolling-resistance coefficient		
C_{rr1}	Zero-speed rolling-resistance coefficient		
C_{rr2}	Rolling-resistance speed factor [1/mph, 1/		
kph]			
$\hat{C_{\tau}}$	Shear-stress coefficient		
t	(local skin-friction coefficient)		
$C_{\tau lam}$	Laminar shear-stress coefficient		
- 1,1011	(local skin-friction coefficient of laminar flow)		
Catural	Turbulent shear-stress coefficient		
€ t,turo	(local skin-friction coefficient of turbulent flow)		
$C \cdot A$	Drag area $[m^2]$		
C_{a}	Skin-friction drag area [m ²]		
$C_{T}A$	Lift area [m ²]		
	Center of gravity		
Cn	Coefficient of prossure		
Cp	Content of pressure		
D	Duese [N_lbs]		
D D	Drag [N, IDS]		
D ,,	Diameter [m]		
d'	Ground clearance ratio, eg. h_{min} / b		
D_i	Induced drag [N, Ibs]		
D_j	Junction drag [N, lbs]		
D_{pres}	Pressure drag [N, lbs]		
D_{skin}	Skin-triction drag [N, lbs]		
δ_{lam}	Laminar boundary-layer thickness		

	(pronounced <i>delta</i>) [m]		
δ_{turb}	Turbulent boundary-layer thickness [m]		
δ^*_{lam}	Laminar displacement thickness [m]		
δ^*_{turb}	Turbulent displacement thickness [m]		
Γ	Circulation (pronounced gamma) $[m^2/s]$		
h	Height [m]		
h^+	Riblet number [nondimensional]		
h_{min}	Minimum ground clearance [m]		
H	Shape factor		
H_r	Riblet height [m]		
k_a	Gas constant of dry air [J/kg-K, Nm/kg-K]		
k_w	Gas constant of water vapor		
	[J/kg-K, Nm/kg-K]		
l	Length [m]		
L	Length [m]		
L	Lift [N, lbs]		
m	Mass [kg]		
M_{bl}	Momentum flow in boundary layer [kg m/s ²]		
M_{f}	Momentum flow in freestream [kg m/s ²]		
u'	Dynamic viscosity (pronounced mu) [Ns/m ²]		
v	Kinematic viscosity (pronounced nu) [m ² /s]		
P_{α}	Partial pressure of air [Pa, N/m ² , psi]		
P	Freestream or ambient pressure		
	$[Pa, N / m^2, psi]$		
P_{I}	Local pressure [Pa, N / m^2 , psi]		
P_{ioc}	Stagnation pressure [Pa, N/m ² , psi]		
P	Partial pressure of water [Pa, N/m ² , psi]		
$\frac{1}{w}$	Dynamic pressure [Pa N/m^2 psi]		
$\frac{q}{R}$	Junction radius [m]		
Ret	Revnolds number based on total body length		
Re	Revnolds number at some location x		
2002	hased on length from leading edge		
	local Revnolds number		
0	Fluid density (pronounced rho) [kg/m ³]		
r t	Thickness (of an airfoil) [m]		
t	Time [sec]		
T	Temperature [°C, K, °F]		
τ	Shear stress (pronounced tau) [Pa, N / m ² , psi]		
θε	Leading-edge junction angle of a strut in		
°f	side view (pronounced <i>theta</i>) [°]		
θ	Laminar momentum thickness [m]		
$\theta_{4\dots 1}$	Turbulent momentum thickness [m]		
U	Velocity [m/s]		
u(v)	Local velocity at some location v [m/s]		
V	Velocity of car [m/s kph mph]		
V	Freestream flow velocity [m/s]		
V_{i}^{∞}	Local flow velocity [m/s]		
V_{10c}	Velocity of wind [m/s knh mnh]		
W	Weight [N. lbs]		
x	Distance, usually from leading edge [m]		
r,	Location of transition from leading edge [m]		
har t	Location of manipuon from leading edge [III]		

USEFUL RELATIONSHIPS

Angle	Degrees [°] Radians [rad]	Angle	$1 \text{ rad} = 180 / \pi^{\circ} = 57.3^{\circ}$
Distance	Kilometer [km] Mile [mi]	Area	$1 m^2 = 10.76 ft^2$ $1 m^2 = 1550.0 in^2$
Drag	Equivalent to a force.	Energy	1 J = 1 Nm 1 Whr = 3600 J
Energy	Joule [J] Watt-hour [Wh or Whr] Work, Newton-meter [Nm]	Force	4.448 N = 1 lb
Force	Newton [N] Pound [lb]	Length	1 m = 39.37 in 1 inch = 0.0254 m = 2.54 cm 1 mile = 1609 m = 1.609 km 1 mile = 5280 ft
Length	Meter [m] Foot [ft]	Mass	1 kg = 2.205 lbm 14.594 kg = 1 slug 32.174 lbm = 1 slug
Mass	Kilogram [kg] Pound mass [lbm] Slug [sl]	Power	745.7 W = 1 hp
Power	Watt [W] Horsepower [hp]		Motor power (given motor torque and rpm) W = (0.105) (Nm) (rpm) hp = (ft-lbs) (rpm) / (5252)
Pressure	Pascal [Pa], equivalent to N/m ² Pounds per square-inch [psi] Atmosphere [atm] Millimeters of mercury [mm Hg]		Road power (given drag force and velocity) W = (N) (m/s) = (0.278) (N) (kph) = (1.988) (lbs) (mph)
Rotational speed	Revolutions per minute [rpm]		– (1.500) (105) (11ph)
Temperature	Degrees Celsius [°C] Kelvin [K] Degrees Fahrenheit [°F]	Pressure	6895 Pa = 1 psi 1 atm = 760 torr = 760 mm Hg = 14.696 psi = 101.3 kPa
Velocity	Kilometers per hour [kph] Miles per hour [mph]	Temperature	$^{\circ}C = (5/9) \times (^{\circ}F - 32)$ K = $^{\circ}C + 273$
Weight	Equivalent to a force	Torque	1.356 Nm = 1 ft-lb
		Velocity	1.609 kph = 1 mph 0.447 m/s = 1 mph