Corrections to
 THE LEADING EDGE, AERODYNAMIC DESIGN OF ULTRA-STREAMLINED LAND VEHICLES

Goro Tamai

As of February 25, 2000
Thank you to the contributors.

Page 29, Figure 2.2.2: Captions under figures have syntax missing.

Figure 2.2.2: The zero-velocity flow at the surface (no-slip condition) can be observed by ink-trace experiments.

Page 34, Figure 2.2.4 caption: "... Curve (c)'s laminar section follows Curve (a) up to 1.5 m ."

Page 53, Figure 2.2.19:
The arrow from $d u_{\sqrt{ }} d z=0$ at δ should point to the upper edge of the boundary layer profile, the label "Chordwise Velocity u_{x} " should be "Chordwise Velocity, u_{y}," and the label for the "Inflection Point" is missing.

Figure 2.2.19: Illustration of the inflection point in the cross-flow velocity profile.

Page 58, 2nd paragraph:
"...Re e_{L} is $V L / \mathcal{N}$. As shown in Figure 2.1.1, as temperature drops, the kinematic viscosity $(v=\mu / \rho)$ drops."

Page 59, Figure 2.2.25:
The inequality expressions below the boundary layer depictions should be as shown below.

Page 70:
NACA 6512 should be NACA 65012.

Page 72, Figure 3.1.1.:
Label "seperation" should be "separation"?

Page 80:
Reference [Reigels] is not in the "References" section (p. 278) and should be spelled "Riegels."

Page 86, line 1 :
The "7" in "NACA7" was supposed to be a footnote number. The footnote should read:
"Dimensions of a whole family of NACA airfoils can be found in [Ref. Abbott]."

Page 86 , third paragraph: The " $\mathrm{C}_{\mathrm{d}, \text { wet }}$ " should be italicized " $C_{d, \text { wet }}$."

Page 87:
The capital Greek Lambda Λ should be an " L " for the length of the torpedo.

Page 87:
In $(1.5(D / L) 1.5)$ the $" 1.5$ " should be written as an exponent. In $(7(D / L) 3)$ the " 3 " should be written as an exponent.

Page 87, Figure 3.2.14 caption: The " $x t$ " should be " x_{t}."

Page 92, Figure 3.2.20, caption:
"... flattened ellipse (area $=0 \mathrm{~m} 2$)." The " 2 " should be written as an exponent.

Page 92, Figure 3.2.21:
The dimensions of the ellipses are missing.

Figure 3.2.21: Profile of a generic streamlined body. The body width is a constant 2 meters along the entire length, and the side-view profile is a 63-Series foil. Though the actual vehicle would probably be cambered, the wetted area of an uncambered body of the same cross-sectional area should be very similar.

Page 92-93, Figures 3.2.20, 3.2.22, 3.2.23:
The label for the X -axis should be [$\mathrm{m}^{\wedge} 2$].

Page 102:
NACA 006 should be NACA 0006.

Page 102, Figure 3.2.33 (b): A_{f} should be:
$A_{f}=0.80 \mathrm{~m}^{2}$.

Page 102, Figure 3.2.33 (c): The A_{f} and $A_{\text {wet }}$ should be:
$A_{f}=1.0 \mathrm{~m}^{2}, A_{\text {wet }}=23.7 \mathrm{~m}^{2}$.

Page 107, Table 3.3.1: The flow around the symmetric body near the ground should have upsweep before and after the body to indicate downforce.

	Free Air	Near Ground
Symmetric, No Camber	$L=0$	$\begin{gathered} L<0 \\ \square \end{gathered}$
Camber		$L=0$

Table 3.3.1: Summary of how camber affects lift L for bodies in free air and those near the ground.

Page 125, first paragraph: "The MIT wind tunnel setup is shown in Section 5.3.1." This photograph was edited out of the book due to poor resolution. The photo is shown below:

Figure 5.3.x: A $1 / 4$-scale model of the 1995 MIT Manta was tested to find how sensitive the car was to changes in angle-of-attack. The model was hung upside-down. Milton D. Wong makes adjustments to the floor fixture.

Page 133, Figure 3.5.2:
The label at the lower right: "incre_sing lift" (the "a" is missing)

Page 136, 4th paragraph: "moreso" should be "more so."

Page 139 to 140 :
"The author..." is repeated on Page 140, line 1.

Page 142, Figure 3.51.3:
The "plot on the left" and "plot on the right" should be "upper" and "lower" plot.

Page 151, Figure 4.1.6:
The " t " for thickness is printed on top of the arrowhead and illegible.

Page 152, Figure 4.1.7b: The D in the figure should be D_{v}.

Page 199, 1st paragraph below photos:
In "... unobstructed surface where", the "where" should be deleted.

Page 207, end of 1st paragraph:
"... can be rounded, as shown by the dotted line in Figure 4.6.1(a)." The proper figure (p. 204) is shown below.
(a)

$$
C_{d} \approx 0.01
$$

Undisturbed Flow

$$
C_{d} \approx 0.7 \sim 1.2
$$

Figure 4.6.1: Side view geometry of 2-D (a) inset and (b) outward surface grooves oriented perpendicular to the flow direction. The grooves are approximately square. Examples of such a defect include body seams, and the gap between solar-cell subarrays. The C_{d} 's are based on h per unit width.

Page 208, Figure 4.6.7:
The caption should have read for the backwards facing step: Sharp ~ 0.2, Rounded ~ 0.16.

Figure 4.6.7: Illustration of a forward and backwards-facing step, and their approximate C_{d} values based on step height per unit step width (perpendicular to flow). Note that a rounded forward-facing step has about a quarter of the drag of its backward-facing counterpart, and that the backwards-facing step's drag is less sensitive to step sharpness. [Ref. Hoerner]

Page 211:
"An intake hole of a few inches in diameter is probably all that ..."

Page 213: [Ref. Larabee] should be [Ref. Larrabee]. Also, the citing is missing on Page 277.

Page 222, Figure 5.3.1 caption:
The rest of the sentence is: ".... of the 1990 MIT Galaxy."

Page 255, Example: Solution text has missing periods at the end of some sentences.
Page 269, Section 6.2: The paragraph starting "Avoid flow separation while..." should be the first bulleted item.

Page 273: [Ref. Aird] is listed twice. First citing should be deleted.

Page 273: Add reference for [Ref. Barlow].
[Ref. Barlow] Barlow, J., et al, "The Aerodynamic Development of the University of Maryland's "Pride of Maryland" Solar Powered Vehicle," SAE 901868, 1990.

Page 274: Add reference for [Ref. Carmichael].
[Ref. Carmichael] Carmichael, Bruce, PERSONAL AIRCRAFT DRAG REDUCTION, Second Edition, 1996, published by the author.

Page 277: Add reference for [Ref. Larrabee].
[Ref. Larrabee], Larrabee, E., "Aerodynamics of Road Vehicles, or Aerodynamics as an Annoyance," Proceedings of the Second AIAA Symposium on Aerodynamics of Sports and Competition Automobiles, 1974.

Page 278: Add reference for [Ref. Riegels].
[Ref. Riegels] Riegels, F.W., AEROFOIL SECTIONS, RESULTS FROM WIND-TUNNEL INVESTIGATIONS,
THEORETICAL FOUNDATIONS, Translated from the German by D.G. Randall, London, Butterworths, 1961.

Page 278 and all references to [Ref. Schlichting]:
[Ref. Schlicting] should be [Ref. Schlichting].

Page 291, bottom:
The "Bucher Leichtbau AG" is mentioned twice in the list of contributors.

